Third Semester B.E. Degree Examination, Dec.2023/Jan.2024 Additional Mathematics – I

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Define dot product between two vectors a and b. Find the sine of the angle between 1 $\vec{a} = 4\vec{i} - \vec{j} + 3\vec{k}$ and $\vec{b} = -2\vec{i} + \vec{j} - 2\vec{k}$. (08 Marks)

Express $\frac{3+4i}{3-4i}$ in the form of x+iy and hence find its modulus and amplitude. (06 Marks)

Find the real part of $\frac{1}{1+\cos\theta+i\sin\theta}$ (06 Marks)

Prove that $\left[\frac{\cos\theta + i\sin\theta}{\sin\theta + i\cos\theta}\right]^4 = \cos 8\theta + i\sin 8\theta$ (08 Marks)

If $\vec{A} = 2\vec{i} - 2\vec{j} + \vec{k}$ and $\vec{B} = 2\vec{i} - 2\vec{j} + \vec{k}$. Show that $(\vec{A} + \vec{B})$ and $(\vec{A} - \vec{B})$ are orthogonal.

Find the value of λ so that the vectors $\vec{A} = 3\vec{i} + 5\vec{j} - 3\vec{k}$, $\vec{B} = \vec{i} + \lambda \vec{j} + 2\vec{k}$ and $\vec{C} = 2\vec{i} - 2\vec{j} + \vec{k}$ are co-planar. (06 Marks)

If $y = \tan^{-1} x$, prove that $(1+x^2)y_{n+2} + 2(n+1)xy_{n+1} + n(n+1)y_n = 0$. Find the angle between the curves $r = a(1+\cos\theta)$ and $r = b(1-\cos\theta)$. (08 Marks)

(06 Marks)

c. If $u = \tan^{-1} \left[\frac{x^3 + y^3}{x - y} \right]$. Show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$. (06 Marks)

Obtain the Maclaurin's series expansion of tan x upto the term containing x⁵. (08 Marks)

Find the Pedal equation to the curve $r^m = a^m \cos m\theta$. (06 Marks)

If u = f(x - y, y - z, z - x), show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$. (06 Marks)

Module-3

Obtain a reduction formula for $\int \cos^n x dx$ (n >0). 5 (08 Marks)

Evaluate $\int x \sqrt{ax - x^2} dx$. (06 Marks)

Evaluate $\iint xydxdy$ where R is the I quadrant of the circle $x^2 + y^2 = a^2$, $x \ge 0$, $y \ge 0$.

(06 Marks)

OR

- Obtain a reduction formula for $\int \sin^n x dx$ (n > 0). (08 Marks)
 - Using reduction formula evaluate $\int_{0}^{1} x^{5} (1-x^{2})^{\frac{3}{2}} dx$ (06 Marks)
 - Evaluate $\iiint_{-\infty}^{\infty} x^2 yz dx dy dz$. (06 Marks)

- a. A particle moves along the curve $x = (1 t^3)$, $y = (1 + t^2)$ and z = (2t 5). Determine the 7 components of velocity and acceleration at t=1 in the direction 2i+j+2k. (08 Marks)
 - b. Find the directional derivative of $\phi = x^2yz + 4xz^2$ at the point (1, -2, -1) in the direction of the vector 2i - j - 2k. (06 Marks)
 - c. If $\vec{F} = (x + y + 1)\vec{i} + \vec{j} (x + y)\vec{k}$, show that $\vec{F} : \text{curl } \vec{F} = 0$ (06 Marks)

- Find div \vec{F} and curl \vec{F} where $\vec{F} = \nabla(x^3 + y^3 + z^3 3xyz)$ (08 Marks)
 - Show that $\overrightarrow{F} = \frac{xi + yj}{x^2 + y^2}$ is solenoidal. (06 Marks)
 - Find the values of the constants a, b, c such that

$$\vec{F} = (x + y + az)i + (6x + 2y - z)j + (x + cy + 2z)k \text{ is irrotational.}$$
 (06 Marks)

Module-5

- a. Solve: $(1+y^2)dx = (\tan^{-1} y x) dy$ b. Solve: $(y^3 3x^2y)dx (x^3 3xy^2)dy = 0$. (08 Marks)
 - (06 Marks)
 - (06 Marks)

- Solve: $\frac{dy}{dx} + \frac{y}{x} = y^2$ (08 Marks)
 - b. Solve: y(x+y)dx + (x+2y-1)dy(06 Marks)
 - c. Solve: $\left[y^2 e^{xy^2} + 4x^3 \right] dx + \left[2xy e^{xy^2} 3y^2 \right] dy = 0$ (06 Marks)